

INSTALLATION RUNBOOK FOR Juniper vMX

Application Type: vMX Version: MOS Version: OpenStack version: 12VNF virtual router 15.1F5-S1.5 8.0 Liberty 1 Introduction 1.1 Target Audience 2 Application Overview 2.1 Juniper vMX Overview 3 Joint Reference Architecture 4 Physical & Logical Network Topology 5 Installation & Configuration 5.1 MOS environment preparation 5.1.1 MOS installation 5.1.2 Creation of OpenStack environment 5.1.3 Health Check Results 5.2 vMX installation steps 6 Basic verification on vMX

1 Introduction

This document is to serve as a detailed Deployment Guide for Juniper vMX (MOS) deployed with Mirantis OpenStack (MOS). This document describes the reference architecture, installation steps for validated vMX with Mirantis OpenStack, limitations and testing procedures.

1.1 Target Audience

This guide is designed for OpenStack Administrators who are deploying Juniper vMX with Mirantis OpenStack.

2 Application Overview

2.1 Juniper vMX Overview

Juniper vMX router is a virtual version of the MX Series 3D Universal Edge Router. Like the MX Series router, the vMX router runs Junos Operating System (Junos OS) and supports Junos OS packet handling and forwarding modeled after the Trio chipset. Configuration and management of vMX routers are the same as for physical MX Series routers, allowing you to add the vMX router to existing network without having to update your Operations Support Systems (OSS).

vMX runs on an industry-standard x86 server with Linux operating system, applicable third-party software, and the Kernel-based Virtual Machine (KVM) hypervisor. vMX software components come in one software package. As part of the package, an orchestration script is included, which encompasses a configuration file that you may customize for your vMX deployment. You may also install multiple vMX instances on one server.

vMX consists of two virtual machine (VM) components:

• Virtual Control Plane (VCP)—Also known as vRE, a virtual machine that runs Junos OS Routing Engine and FPC microkernel software.

• Virtual Forwarding Plane (VFP)—Also known as vPFE, a virtual machine that runs the Packet Forwarding Engine, referred to as RIOT, which is modeled after the Trio chipset. vMX traffic comes in through the physical NICs of the host and is sent into the VFP VM through virtual NICs using SR-IOV (device pass-through) or virtio (paravirtualized device drivers). The vPFE image contained in the ISO is only a virtio version.

The connectivity between the two VMs is managed through the following networks:

- Internal network (br-int) for communication between the VCP and the VFP
- External network (br-ext) for management access to the VMs

Figure 1 vMX Architecture

3 Joint Reference Architecture

The reference architecture used for this run book is as follow:

Figure 2 vMX joint architecture with Mirantis OpenStack

Below are the high level steps to bring up vMX on Mirantis OpenStack:

1. Creation of OpenStack environment

Download and install MOS 8.0

- Preinstall checks
 Check versions of OS, grub, kernel, KVM, libvirt, virsh connectivity test to QEMU, IXGBE

 Setup internals
 - Create and Deploy Mirantis OpenStack environment
- Bring up vMX
 Bring up VCP and VFP
 Affinities CPU Cores for best performance

OpenStack Heat template is also developed for vMX deployment, and the workflow is illustrated as follow:

Figure 3 Heat template basic workflow on MOS 8.0

4 Physical & Logical Network Topology

The setup and testing in this runbook will be based on the logical and physical topology outlined in *Figure 4*.

Figure 4 vMX topology on Mirantis OpenStack

5 Installation & Configuration

Hardware Requirements

Below are the hardware requirements to run the vMX image on Mirantis OpenStack.

Table 1 - Hardware Configuration

Component	Values
CPU	For lab simulation and low performance (less than 100 Mbps) use cases, any x86 processor (Intel or AMD) with VT-d capability. Be sure to specify the vPFE_lite image in the vmx.conf file. For all other use cases, Intel Ivy Bridge processors or later are required. Example of Ivy Bridge processor: Intel Xeon E5-2667 v2 @ 3.30 GHz 25 MB Cache For Single Root I/O Virtualization (SR-IOV) NIC type, use Intel 82599-based PCI-Express cards (10 Gbps) and Ivy Bridge processors.
Memory	Minimum: 10 GB (2 GB for VCP, 6 GB for VFP, 2 GB for host OS)
Storage	Local or NAS Each vMX instance will require ~1G of disk storage
Other requirements	Hyperthreading: Not recommended NIC: Intel 82599 for 10GBE

Software Requirements Table 2 - vMX Packaging

Directory / Filename	Description
build/	Location where the different vmx instances are installed by the orchestration scripts
config/	Where the example scripts are located: vmx.conf – Configuration file for defining vMX parameters. vmx-junosdev.conf – vMX interface binding file. All configuration files are in the YAML Format.
docs/	Location of this document
env/	OS environment settings
images/	The VM images are located here: jinstall64-vmx-*.img – Software image file for VCP. vmxhdd.img – Software image file for VCP file storage. vPFE_lite-*.img – Software image file for VFP (lite version). Use this image for lab simulation and low performance (less than 100 Mbps) applications. vPFE_*.img – Software image file for VFP (performance version).
scripts/	Juniper Networks orchestration scripts.
vmx.sh	Main orchestration script.

The directory structure is as follows:

5.1 MOS environment preparation

Compute node must be a bare metal node, as Juniper vMX does not support nested virtualization.

5.1.1 MOS installation

5.1.2 Creation of OpenStack environment

Using Fuel Web UI the following cluster was created:

- OS Ubuntu 14.04
- Mode HA
- Hypervisor KVM
- Networking Neutron + VLAN/VXLAN
- Storage any
- Additional services any

Steps:

- 1. Download 8.0 MOS ISO from <u>Mirantis website</u>.
- 2. <u>Boot the Fuel Master node</u>.
- 3. <u>Create a new OpenStack environment</u> in the following configuration:
 - a. KVM as hypervisor
 - b. Neutron+VLAN or VXLAN as networking option
- 5.1.3 Health Check Results

OpenStack Testing Framework (OSTF also known as Health Checks) provides ability to verify the cluster operability in the post-deployment stage. You can find more information about Health Checks in the official <u>Mirantis OpenStack documentation</u>.

5.2 vMX installation steps

- 1. Please contact with Juniper to obtain vMX images and vMX Heat template.
- 2. Create Glance images:

```
# glance image-create --min-disk 20 --min-ram 2048 --property hw_cdrom_bus=ide
--property hw_disk_bus=ide --property hw_vif_model=e1000 --file
jinstall64-vmx-15.1F5-S1.5-domestic.img --name VCP
# glance image-create --min-disk 4 --min-ram 8192 --property hw_cdrom_bus=ide
--property hw_disk_bus=ide --property hw_vif_model=virtio --file vFPC-20160503.img
--name VFP
```

- Create flavors for vMX according to its <u>requirements</u>:
 # nova flavor-create VCP auto 2048 20 1
 - # nova flavor-create VFP auto 8192 4 3
- 4. Create required networks and subnets with necessary properties (in our case we've used 4 networks: vMX_GE000_net, vMX_GE001_net, internal and management):

```
# neutron net-create vMX_public_net
# neutron subnet-create vMX_public_net 10.20.25.0/24 --name vMX_public_net_subnet
--enable-dhcp
# neutron net-create vMX_GE000_net
# neutron subnet-create vMX_GE000_net 10.20.20.0/24 --name vMX_GE000_net_subnet
--enable-dhcp
# neutron net-create vMX_GE001_net
# neutron subnet-create vMX_GE001_net
```

--enable-dhcp

Internal network will be created automatically via Heat.

Only if you plan to access vMX instances via external network, you must connect vMX public (management) network with OpenStack external network via a router: # neutron router-interface-add router04 vMX_public_net_subnet

5. Prepare Heat files:

a. Create an env file:

```
# cat vmx_heat.env
parameters:
    vmx_ident: vmx1
    hostname_re: vmx1_re0
    vmx_vre_name: vmx1_re0
    vmx_vpfe_name: vmx1_fpc
    vmx_oam_network: c98e1253-0891-4308-b7eb-adf7132e16c8
    vmx_vre_img: VCP
    vmx_vpfe_img: VFP
    vmx_vpfe_flavor: VCP
    vmx_vpfe_flavor: VFP
    ge000_network: 060808d4-050f-487f-a648-c69e8d0955ad
```

ge001_network: 5b95b900-9614-43ae-a3f4-6bb827a691ee

b. Add a management network gateway in a template file, only if you plan to access vMX instances via external network:
In the "instance_vre" section in the "metadata" subsection specify an ip address of vMX_public_net port which is in the router04 (in our case it is 10.20.25.1).

```
instance_vre:
type: OS::Nova::Server
...
<cut here>
...
metadata:
gateway: 10.20.25.1
```

6. Launch vMX instance:

```
# heat stack-create -f ./vmx-heat-mono.yam1 -e ./vmx_heat.env vMX
In Horizon, open the console and wait until vMX instances are installed (login prompt
should appear):
vCP:
```

Wind River Linux 6.0.0.13 host-10-20-25-14 tty0

host-10-20-25-14 login:

vFP: vmx_re0 (ttyv0) BTX version is 1.02

login:

Now you can connect to vMX instances by ssh via management network. If you plan to access vMX instances via external network, you must also associate floating IPs.

6 Basic verification on vMX

Verify MIC and Pl	C are shown							
root@vmx_re0	> show chassi	s hardware						
Hardware inventory:								
Item	Version	Part number	Serial number	Description				
Chassis			VM5758320B7F	VMX				
Midplane								
Routing Engi	ne 0			RE-VMX				
CB 0				VMX SCB				
CB 1				VMX SCB				
FPC Ø				Virtual FPC				
CPU	Rev. 1.0	RIOT	123XYZ987					

MIC	9				Virtual	
PIC 0		BUILTIN BU		ILTIN	Virtual	
1.	. Verify all interfaces show up correctly					
	root@vmx re0> show	interfaces	terse	2		
	Interface	Admin	Link	Proto	Local Remote	
	ge-0/0/0	an	up			
	ge-0/0/0.0	au	up	inet	10.20.20.2/24	
	8, -,	- P	- F	multiser	rvice	
	lc-0/0/0	an	up			
	lc-0/0/0.32769	au	up	vpls		
	pfe-0/0/0	up	up	· P		
	pfe-0/0/0.16383	up	up	inet		
	p, .,	- P	- F	inet6		
	pfh-0/0/0	up	up			
	pfh-0/0/0.16383	up	up	inet		
	nfh-0/0/0.16384	un	un	inet		
	ge-0/0/1	un	un	11100		
	$g_{e}=0/0/1$ 0	un	un	inet	10 20 21 2/24	
	80 0/0/210	чÞ	۹Þ	multiser	vice	
	ge-0/0/2	au	down	mar erset		
	ge-0/0/3	up	down			
	ge-0/0/4	up	down			
	ge-0/0/5	up	down			
	ge-0/0/5	up	down			
	$g_{e}=0/0/7$	up	down			
	ge_0/0/8	up	down			
	ge-0/0/0	up	down			
	chn0	up	un			
	demux0	up	un			
	dsc	up	un			
	om1	up	un			
	em1 0	up	un	inet	10 0 0 1/8	
	emi.o	up	up	Inec		
					128.0.0.1/2	
				inoth	$f_{20}, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,$	
				Ineco	fec0::::0:0:1/61	
				+nn	0v4	
	oci			ciip	0,4	
	ESI fyn0	up	up			
	Txp0	up	up	inat		
		up	up up	Inec	10.20.25.15/24	
	51 C	up	up			
	inp inp	up	up			
	icov	up	up			
	JSI'V	up	up	inat	129 0 0 127/2	
	100	up	up	TUEC	120.0.0.12//2	
	TOR	up	up			

100.16384	up	up	inet	127.0.0.
100.16385	up	up	inet	
lsi	up	up		
mtun	up	up		
pimd	up	up		
pime	up	up		
pip0	up	up		
рр0	up	up		
tap	up	up		
vtep	up	up		

1 --> 0/0

2. Verify connectivity between VFP and VCP

When the VCP and VFP connection is established, *show interfaces terse* command in the VCP CLI displays the ge-0/0/x interfaces and the following messages appear in the VFP syslog file (/var/log/messages):

RPIO: Accepted connection from 172.16.0.1:50896 <-> vPFE:3000 RPIO: Accepted connection from 172.16.0.1:56098 <-> vPFE:3000 HOSTIF: Accepted connection

The two management interfaces (VCP VM and VFP VM) should be able to reach each other. For example:

root@vmx_re0> ping 10.20.25.14
PING 10.20.25.14 (10.20.25.14): 56 data bytes
64 bytes from 10.20.25.14: icmp_seq=0 ttl=64 time=2.135 ms

3. Verify VMs are running

Verify that the VMs are running after vMX is installed, by using *nova list* command.