S JuniPer:
MIRANTIS o

INSTALLATION RUNBOOK FOR
Juniper vMX

Application Type: 12VNF virtual router
vMX Version: 15.1F5-S1.5
MOS Version: 8.0

OpenStack version: Liberty

1 Introduction
1.1 Target Audience
2 Application Overview
2.1 Juniper vMX Overview
3 Joint Reference Architecture
4 Physical & Logical Network Topology
5 Installation & Configuration
5.1 MOS environment preparation
5.1.1 MQOS installation
5.1.2 Creation of OpenStack environment
5.1.3 Health Check Results
5.2 vMX installation steps
6 Basic verification on vMX

1 Introduction

This document is to serve as a detailed Deployment Guide for Juniper vMX (MOS) deployed with
Mirantis OpenStack (MOS). This document describes the reference architecture, installation steps
for validated vMX with Mirantis OpenStack, limitations and testing procedures.

1.1 Target Audience

This guide is designed for OpenStack Administrators who are deploying Juniper vMX with
Mirantis OpenStack.

2 Application Overview

2.1 Juniper vMX Overview

Juniper vMX router is a virtual version of the MX Series 3D Universal Edge Router. Like the MX
Series router, the vMX router runs Junos Operating System (Junos OS) and supports Junos OS
packet handling and forwarding modeled after the Trio chipset. Configuration and management
of vMX routers are the same as for physical MX Series routers, allowing you to add the vMX
router to existing network without having to update your Operations Support Systems (OSS).

vMX runs on an industry-standard x86 server with Linux operating system, applicable third-party
software, and the Kernel-based Virtual Machine (KVM) hypervisor. vMX software components
come in one software package. As part of the package, an orchestration script is included, which
encompasses a configuration file that you may customize for your vMX deployment. You may
also install multiple vMX instances on one server.

vMX consists of two virtual machine (VM) components:

« Virtual Control Plane (VCP)—Also known as VRE, a virtual machine that runs Junos OS
Routing Engine and FPC microkernel software.

« Virtual Forwarding Plane (VFP)—Also known as vPFE, a virtual machine that runs the
Packet Forwarding Engine, referred to as RIOT, which is modeled after the Trio chipset.
vMX traffic comes in through the physical NICs of the host and is sent into the VFP VM
through virtual NICs using SR-IOV (device pass-through) or virtio (paravirtualized device
drivers). The vPFE image contained in the ISO is only a virtio version.

The connectivity between the two VMs is managed through the following networks:

e Internal network (br-int) for communication between the VCP and the VFP
e External network (br-ext) for management access to the VMs

Internal Bridge br-ext

{
I

eml:
I 128.0.0.16

<any address>

vip-int

VTRIO

DPDK

e 1 g

Figure 1 vMX Architecture

3 Joint Reference Architecture

The reference architecture used for this run book is as follow:

MIRANTIS u SCRIPTS

openstack-

Physical NICs Management
traffic

Figure 2 vMX joint architecture with Mirantis OpenStack

Below are the high level steps to bring up vMX on Mirantis OpenStack:

1. Creation of OpenStack environment
Download and install MOS 8.0
2. Preinstall checks
Check versions of OS, grub, kernel, KVM, libvirt, virsh connectivity test to QEMU, IXGBE
3. Setup internals
Create and Deploy Mirantis OpenStack environment
4. Bring up vMX
Bring up VCP and VFP
Affinities CPU Cores for best performance

OpenStack Heat template is also developed for vMX deployment, and the workflow is illustrated
as follow:

vMX Orchestration template
for Mirantis OpenStack

OpenStack services

| —1

Figure 3 Heat template basic workflow on MOS 8.0

4 Physical & Logical Network Topology

The setup and testing in this runbook will be based on the logical and physical topology outlined

in Figure 4.

HOST

eml: fxpO:

Internal —
g —
B”dge

VFP

128.0.0.1/16 X.X.X.a/m
VCP
I vep-int — Virtual Control Plane 1'. vep-ext I

-
—

External
Bridge
X.X.Xy/m

I vfp-int

ethl:
128.0.0.16/16

Virtual NICs

=

Physical NICs

Virtual Forwarding Plane
|

IEJ

vip-ext I

W etho:

X.X.X.b/m

Figure 4 vMX topology on Mirantis OpenStack

8043316

5 Installation & Configuration

Hardware Requirements
Below are the hardware requirements to run the vMX image on Mirantis OpenStack.

Table 1 - Hardware Configuration

Component Values

CPU For lab simulation and low performance (less than 100 Mbps) use cases, any x86
processor (Intel or AMD) with VT-d capability. Be sure to specify the vPFE_lite image
in the vmx.conf file.

For all other use cases, Intel Ivy Bridge processors or later are required.

Example of Ivy Bridge processor: Intel Xeon E5-2667 v2 @ 3.30 GHz 25 MB Cache
For Single Root I/0 Virtualization (SR-10V) NIC type, use Intel 82599-based
PCI-Express cards (10 Gbps) and lvy Bridge processors.

Memory Minimum: 10 GB (2 GB for VCP, 6 GB for VFP, 2 GB for host OS)

Storage Local or NAS
Each vMX instance will require ~1G of disk storage

Other requirements Hyperthreading: Not recommended
NIC: Intel 82599 for 10GBE

Software Requirements
Table 2 - vMX Packaging

Directory / Filename Description

Location where the different vmx instances are installed by the orchestration scripts

build/
fi Where the example scripts are located:

config/ vmx.conf - Configuration file for defining vMX parameters.
vmx-junosdev.conf — vMX interface binding file.
All configuration files are in the YAML Format.
Location of this document

docs/
OS environment settings

env/

. The VM images are located here:

images/

jinstall64-vmx-*.img - Software image file for VCP.

vmxhdd.img - Software image file for VCP file storage.

VPFE_lite-*.img - Software image file for VFP (lite version).

Use this image for lab simulation and low performance (less than 100 Mbps)
applications.

VPFE_*.img — Software image file for VFP (performance version).

scripts/ Juniper Networks orchestration scripts.

Main orchestration script.
vmx.sh

The directory structure is as follows:

[opt/vmx:

—build

——config

—— docs

+——drivers

——env

—images

|—— scripts

common
junosdevind
kvm

templates

L—vmx.sh

5.1 MOS environment preparation

Compute node must be a bare metal node, as Juniper vMX does not support nested virtualization.

5.1.1 MOS installation

5.1.2 Creation of OpenStack environment

Using Fuel Web Ul the following cluster was created:
e OS - Ubuntu 14.04

e Mode - HA
e Hypervisor - KVYM
e Networking — Neutron + VLAN/VXLAN
e Storage - any
e Additional services - any
Steps:

1. Download 8.0 MOS ISO from_Mirantis website.
2. Boot the Fuel Master node.

3. Create a new OpenStack environment in the following configuration:

a. KVM as hypervisor
b. Neutron+VLAN or VXLAN as networking option

5.1.3 Health Check Results

OpenStack Testing Framework (OSTF also known as Health Checks) provides ability to verify the
cluster operability in the post-deployment stage. You can find more information about Health
Checks in the official Mirantis OpenStack documentation.

https://www.mirantis.com/products/mirantis-openstack-software/
https://www.mirantis.com/products/mirantis-openstack-software/
http://docs.openstack.org/developer/fuel-docs/userdocs/fuel-install-guide/install_install_fuel.html
http://docs.openstack.org/developer/fuel-docs/userdocs/fuel-user-guide/create-environment.html
http://docs.openstack.org/developer/fuel-docs/userdocs/fuel-user-guide/verify-environment.html

5.2 vMX installation steps

1.

Please contact with Juniper to obtain vMX images and vMX Heat template.

Create Glance images:

glance image-create --min-disk 20 --min-ram 2048 --property hw_cdrom_bus=ide
--property hw_disk_bus=ide --property hw_vif_model=e1000 --file
jinstall6é4-vmx-15.1F5-S1.5-domestic.img --name VCP

glance image-create --min-disk 4 --min-ram 8192 --property hw_cdrom_bus=ide
--property hw_disk_bus=ide --property hw_vif_model=virtio --file vFPC-20160503.img
--name VFP

Create flavors for vMX according to its requirements:
nova flavor-create VCP auto 2048 20 1
nova flavor-create VFP auto 8192 4 3

Create required networks and subnets with necessary properties (in our case we've used 4

networks: - vYMX_GEOO0O_net, vMX_GEOO1_net, internal and management):

neutron net-create vMX_public_net

neutron subnet-create vMX_public_net 10.20.25.0/24 --name vMX_public_net_subnet
--enable-dhcp

neutron net-create vMX_GEOOO_net

neutron subnet-create VMX_GE@OO_net 10.20.20.0/24 --name VMX_GEO@OO net_subnet
--enable-dhcp

neutron net-create vMX_GEO@@1l_net

neutron subnet-create vMX_GE@@1l_net 10.20.21.0/24 --name vMX_GE@@1_net_subnet
--enable-dhcp

Internal network will be created automatically via Heat.
Only if you plan to access vMX instances via external network, you must connect vMX

public (management) network with OpenStack external network via a router:
neutron router-interface-add router@4 vMX_public_net_subnet

Prepare Heat files:

a. Create an env file:

cat vmx_heat.env

parameters:
vmx_ident: vmx1
hostname_re: vmx_re0
vmx_vre_name: vmx1_re0
vmx_vpfe_name: vmx1_fpc
vmx_oam_network: c98e1253-0891-4308-b7eb-adf7132e16c8
vmx_vre_img: VCP
vmx_vpfe_img: VFP
vmx_vre_flavor: VCP
vmx_vpfe_flavor: VFP
ge000_network: 060808d4-050f-487f-a648-c69e8d0955ad

http://www.juniper.net/techpubs/en_US/vmx15.1f4/topics/reference/general/vmx-hw-sw-minimums.html

ge001_network: 5b695b900-9614-43ae-a3f4-6bb827a691ee

b. Add a management network gateway in a template file, only if you plan to access
vMX instances via external network:
In the “instance_vre” section in the “metadata” subsection specify an ip address of
vMX_public_net port which is in the routerO4 (in our case it is 10.20.25.1).

instance_vre:
type: OS::Nova::Server

<cut here>

metadata:
gateway: 10.20.25.1

6. Launch vMX instance:
heat stack-create -f ./vmx-heat-mono.yaml -e ./vmx_heat.env vMX
In Horizon, open the console and wait until vMX instances are installed (lLogin prompt
should appear):

vCP:
Wind River Linux 6.0.0.13 host-10-20-25-14 tty0

host-10-20-25-14 login:

VFP:
vmx_re0 (ttyv0) BTX version is 1.02

login:
Now you can connect to vMX instances by ssh via management network.
If you plan to access vMX instances via external network, you must also associate
floating IPs.
6 Basic verification on vMX
Verify MIC and PIC are shown

root@vmx_re@> show chassis hardware
Hardware inventory:

Item Version Part number Serial number Description

Chassis VM5758320B7F VMX

Midplane

Routing Engine © RE -VMX

CB o VMX SCB

CB 1 VMX SCB

FPC © Virtual FPC
CPU Rev. 1.0 RIOT 123XYZ987

MIC ©
PIC ©

BUILTIN

BUILTIN

1. Verify all interfaces show up correctly

root@vmx_re@> show interfaces terse

Interface
ge-0/0/0
ge-0/0/0.0

lc-0/0/0
1c-0/0/0.32769
pfe-0/0/0
pfe-0/0/0.16383

pfh-e/0/0
pfh-0/0/0.16383
pfh-0/0/0.16384
ge-0/0/1
ge-0/0/1.0

ge-0/0/2
ge-0/0/3
ge-0/0/4
ge-0/0/5
ge-0/0/6
ge-0/0/7
ge-0/0/8
ge-0/0/9
cbpo
demux®
dsc

eml
eml.o

esi
fxpo
fxpo.o
gre
ipip
irb
jsrv
jsrv.1
loo

Admin Link Proto

up
up

up
up
up
up

up
up
up
up
up

up
up
up
up
up
up
up
up
up
up
up
up
up

up
up
up
up
up
up
up
up
up

up
up

up
up
up
up

up
up
up
up
up

down
down
down
down
down
down
down
down
up
up
up
up
up

up
up
up
up
up
up
up
up
up

Virtual
Virtual

Local

Remote

fe80::fal6:3eff:fec3:a691/64

inet 10.20.20.2/24

multiservice

vpls

inet

inet6

inet

inet

inet 10.20.21.2/24

multiservice

inet 10.0.0.4/8
128.0.0.1/2
128.0.0.4/2

inet6
fec0::2:0:0:4/64

tnp ox4

inet 10.20.25.15/24

inet 128.0.0.127/2

100.16384 up up inet 127.0.0.1 --> 0/0

100.16385 up up inet
1si up up
mtun up up
pimd up up
pime up up
pip@ up up
ppo up up
tap up up
vtep up up

Verify connectivity between VFP and VCP

When the VCP and VFP connection is established, show interfaces terse command in the VCP CLI
displays the ge-0/0/x interfaces and the following messages appear in the VFP syslog file
(/var/log/messages):

RPIO: Accepted connection from 172.16.0.1:50896 <-> vPFE:3000

RPIO: Accepted connection from 172.16.0.1:56098 <-> vPFE:3000

HOSTIF: Accepted connection

The two management interfaces (VCP VM and VFP VM) should be able to reach each other. For
example:

root@vmx_re@> ping 10.20.25.14

PING 10.20.25.14 (10.20.25.14): 56 data bytes

64 bytes from 10.20.25.14: icmp_seq=0 ttl=64 time=2.135 ms

Verify VMs are running
Verify that the VMs are running after vMX is installed, by using nova list command.

11

