
 

 

 

 

 

INSTALLATION RUNBOOK FOR 

Iron.io + IronWorker 

 

Application Type: Job processing 

Application Version: 1.0 

MOS Version: 8.0 

OpenStack version: Liberty 

Murano package 

checksum: 
27ba40000dc1885b830d3d370b3fb5b2 

Glance image checksum 

(docker): 
158e19b86e7532aea708267cc8092e32 

Glance image checksum 

(kubernetes): 
16e36fe2c6abac0103af1faae6203213 

 

  

 
 



Content 
 

Document History 

1 Introduction 

1.1 Target Audience 

2 Application overview 

3 Joint Reference Architecture 

4 Physical & Logical Network Topology 

5 Installation & Configuration 

5.1 Environment preparation 

5.2 MOS installation 

5.2.1Health Check Results 

5.3 <Application name> installation steps 

5.4 Limitations 

5.5 Testing 

5.5.1 Test cases 

5.5.2 Test Results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Document History 
 

Version Revision Date Description 

0.1 08-29-2016 Initial Version 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 Introduction 
 

This document is to serve as a detailed Deployment Guide for Hybrid IronWorker. Iron.io offers 

IronWorker as a hosted service or as a Hybrid deployment. Hybrid IronWorker enables you to 

get all the power and benefits of IronWorker platform while running your workloads on your own 

hardware. You can run them on your own servers on any cloud or even in your own datacenter, 

behind the firewall. 

This document describes the reference architecture, installation steps for Mirantis OpenStack 

(MOS) + Hybrid IronWorker, limitations and testing procedures 

 

1.1 Target Audience 

Developers building distributed applications on top of OpenStack need a batch of worker to 

process jobs. Such developers can register an account in Iron.io, deploy IronWorker on top of 

OpenStack on their side and post jobs in the Worker’s API. Every posted job than will be 

executed on a deployed IronWorker instance. 

2 Application overview 
 

With Hybrid Iron.io, the API and all the complexity of our job processing system lives in the 

cloud, while the actual execution of the workloads is on-premise, behind your firewall, on your 

hardware (or in your own VPC). The only thing you need to run on your systems is our runner 

container; no databases to install and maintain, no API servers, or anything else. The runner 

container talks to the Iron.io API, asking for jobs, executing them, and dealing with all the things 

that can happen while running. 



3 Joint Reference Architecture 

 

4 Physical & Logical Network Topology 
 

The following are two supported installation methods that we’ll cover in Section 5.3, steps 4-5. 

 

 

 



4.1 Docker Standalone Host Installation 
 

This installation method has a dependency on the Docker Murano package. A single Docker 

host is deployed with the IronWorker Docker image. 

 
Application Components 

 

4.2 Kubernetes Cluster Installation 
 

This installation method has a dependency on the Kubernetes Murano package. A cluster of 

Kubernetes pods are deployed with the IronWorker Docker image. 

 
 

 

 



Application Components 

 
 

 

 

5 Installation & Configuration 

5.1 Environment preparation 
 

The only requirement is that Murano be installed in order to run the IronWorker application  

component.  

 

The following settings are provided as an example, as they were tested for the lab environment:  

● OpenStack Release:  Liberty on Ubuntu 14.04  

● Compute:   QEMU 

● Network:   Neutron with VLAN segmentation 

● Storage Backends:  Cinder LVM over iSCSI volumes 

● Additional Services:  Install Murano 

5.2 MOS installation 
 

Guidelines and best practices published by Mirantis apply. Please follow Mirantis documentation 

on setting up a Fuel node and deploying your OpenStack environment - 

https://docs.mirantis.com/openstack/fuel/fuel-8.0/ 

 

5.2.1Health Check Results 

 

This guide assumes that all automated health checks pass following the deployment of the 

OpenStack environment. No additional health checks are required to validate the IronWorker 

Murano package. 

 

 

5.3 IronWorker installation steps 
 

1. Add the IronWorker package from the Murano community app catalog - 

https://apps.openstack.org/#tab=murano-apps 

https://docs.mirantis.com/openstack/fuel/fuel-8.0/
https://apps.openstack.org/#tab=murano-apps


 

2. Create a Murano environment: 

a. In the Horizon dashboard, navigate to  

Murano > Application Catalog > Environments 

b. On the Environments page, click the Add New  button.  

c. In the Environment Name field, enter the name for the new environment.  

d. From the Environment Default Network drop-down list, choose a specific 

network, if necessary, or leave the default Create New option to generate a new 

network.  

 

3. Add the IronWorker component to the environment created, and follow the 

installation wizard. 

 

 

Specify CLUSTER_ID and CLUSTER_TOKEN of your IronWorker cluster. Other 

values could remain with their defaults. To retrieve your CLUSTER_ID and 

CLUSTER_TOKEN please follow the Prepare the environment section of the Test 

Cases section of this document. 

4. For IronWorker on Docker Standalone Host 



a. Click Add Application button under Container Host field and select Docker 

Standalone Host 

b. Configure Docker Standalone Host Component 

 

 
 

5. For IronWorker on Kubernetes 

a. Click Add Application button under Container Host field and select Kubernetes 

Pod  

b. Configure Kubernetes Pod Component 



 
c. Click Add Application button under Kubernetes cluster field press  

 



d. Configure Kubernetes Cluster Component 

 



 
6. Click Deploy the Environment 

 

 

5.4 Limitations 

 

● Only HTTP endpoints for API_URL are supported. HTTPS will be supported in 

upcoming patch. 

● Make sure you have enough memory on instances you spawn. Each IronWorker 

instance requires 16 + CONCURRENCY*MEMORY_PER_JOB megabytes. 

 

5.5 Testing  

5.5.1 Test cases 

Testing the IronWorker installation was done manually. You need an Iron.io IronWorker account 

to pass the test case successfully. 

 

Prepare the environment 

 

1. Login into your Iron.io IronWorker account and collect the PROJECT_ID and TOKEN on 

the https://hud.iron.io/dashboard page (click on the key button aside your project) 

https://hud.iron.io/dashboard


 
2. Make sure you’ve created a cluster, if not, please create a new one 

a. Contact Iron customer support (support@iron.io) to ensure that custom clusters 

are enabled for your account. 

b. Open My Clusters under your login button 

 
 

c.Click New Cluster and provide a name, memory and disk space per runner, then 

click Create New Cluster 

mailto:support@iron.io
mailto:support@iron.io


 
 

3. Copy CLUSTER_ID and CLUSTER_TOKEN from your cluster page 

 
4. Open a terminal  

5. Export the following variables 

export IRON_PROJECT_ID=<Your PROJECT_ID> 

export IRON_TOKEN=<Your TOKEN> 

export IRON_CLUSTER_ID=<Your CLUSTER_ID 

 

6. Install Iron CLI  

curl -sSL https://cli.iron.io/install | sh 

 

7. Register a code package (Docker image) within IronWorker to execute, for example, 

Docker’s hello-world. 

iron register hello-world  

Case 1 

 

Execute the following command inside the terminal with the exported variables, it should print 

Docker’s hello-world output. 

iron worker queue -cluster $IRON_CLUSTER_ID -wait hello-world 



 

For more information about Iron CLI please visit 

http://dev.iron.io/worker/cli/http://dev.iron.io/worker/cli/ 

 

 

5.5.2 Test Results 

Case 1 output 

Note: ID’s in your test run will differ 

 
----->  Configuring client 
        Project 'test1' with id='568ac1dff254f2000600024c' 
----->  Queueing task 'hello-world' 
        Queued task with id='57b33f067582400006cb1b80' 
        Check 

https://hud.iron.io/tq/projects/568ac1dff254f2000600024c/jobs/57b33f067582400006cb1b80 for more 

info 
----->  Waiting for task57b33f067582400006cb1b80 
----->  Done 
----->  Printing Log: 

 
Hello from Docker! 
This message shows that your installation appears to be working correctly. 

 
To generate this message, Docker took the following steps: 
 1. The Docker client contacted the Docker daemon. 
 2. The Docker daemon pulled the "hello-world" image from the Docker Hub. 
 3. The Docker daemon created a new container from that image which runs the 
    executable that produces the output you are currently reading. 
 4. The Docker daemon streamed that output to the Docker client, which sent it 
    to your terminal. 

 
To try something more ambitious, you can run an Ubuntu container with: 
 $ docker run -it ubuntu bash 

 
Share images, automate workflows, and more with a free Docker Hub account: 
 https://hub.docker.com 

 
For more examples and ideas, visit: 
 https://docs.docker.com/engine/userguide/ 

 

6 How To (Applicable for Murano packages & Glance images) 
 

Pre-requisites: 

● OS: Linux 

● Mirantis OpenStack is up and running 

● Murano-enabled environment 

● Murano package is imported 

 

http://dev.iron.io/worker/cli/
http://dev.iron.io/worker/cli/
https://docs.docker.com/engine/userguide/


6.1 Murano package check 

 

1. Download Murano package 

Go to the Horizon -> Murano tab -> Package definitions 

Select ‘Download Package’ at the ‘Actions’ drop down list 

2. Go to the downloaded catalog and execute the following command: 

# md5sum <package_name> 

3. Add the md5 checksum to the runbook 

 

6.2 Glance image check 

1. Go to the controller node via SSH 

2. Get the UUID of your glance image 

# source /root/openrc 

# glance image-list 

3. Get your package’s checksum 

# glance image-show <murano_image_UUID> | grep checksum 

4. Add the image checksum to the title page 

 

 

 

 

 


