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1 Introduction

This document is to serve as a detailed Deployment Guide for Hybrid IronWorker. Iron.io offers
IronWorker as a hosted service or as a Hybrid deployment. Hybrid IronWorker enables you to
get all the power and benefits of lronWorker platform while running your workloads on your own
hardware. You can run them on your own servers on any cloud or even in your own datacenter,
behind the firewall.

This document describes the reference architecture, installation steps for Mirantis OpenStack

(MOS) + Hybrid IronWorker, limitations and testing procedures

1.1 Target Audience

Developers building distributed applications on top of OpenStack need a batch of worker to
process jobs. Such developers can register an account in Iron.io, deploy IronWorker on top of
OpenStack on their side and post jobs in the Worker’s API. Every posted job than will be

executed on a deployed IronWorker instance.

2 Application overview

With Hybrid Iron.io, the API and all the complexity of our job processing system lives in the
cloud, while the actual execution of the workloads is on-premise, behind your firewall, on your
hardware (or in your own VPC). The only thing you need to run on your systems is our runner
container; no databases to install and maintain, no API servers, or anything else. The runner
container talks to the Iron.io API, asking for jobs, executing them, and dealing with all the things

that can happen while running.



3 Joint Reference Architecture
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4 Physical & Logical Network Topology

The following are two supported installation methods that we’ll cover in Section 5.3, steps 4-5.



4.1 Docker Standalone Host Installation

This installation method has a dependency on the Docker Murano package. A single Docker
host is deployed with the IronWorker Docker image.
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4.2 Kubernetes Cluster Installation

This installation method has a dependency on the Kubernetes Murano package. A cluster of
Kubernetes pods are deployed with the IronWorker Docker image.
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5 Installation & Configuration

5.1 Environment preparation

The only requirement is that Murano be installed in order to run the IronWorker application
component.

The following settings are provided as an example, as they were tested for the lab environment:
OpensStack Release: Liberty on Ubuntu 14.04

Compute: QEMU

Network: Neutron with VLAN segmentation

Storage Backends: Cinder LVM over iSCSI volumes

Additional Services: Install Murano

5.2 MOS installation

Guidelines and best practices published by Mirantis apply. Please follow Mirantis documentation
on setting up a Fuel node and deploying your OpenStack environment -
https://docs.mirantis.com/openstack/fuel/fuel-8.0/

5.2.1Health Check Results
This guide assumes that all automated health checks pass following the deployment of the

OpenStack environment. No additional health checks are required to validate the IronWorker
Murano package.

5.3 IronWorker installation steps

1. Add the IronWorker package from the Murano community app catalog -
https://apps.openstack.org/#tab=murano-apps



https://docs.mirantis.com/openstack/fuel/fuel-8.0/
https://apps.openstack.org/#tab=murano-apps

Create a Murano environment:
a. Inthe Horizon dashboard, navigate to
Murano > Application Catalog > Environments
b. On the Environments page, click the Add New button.
In the Environment Name field, enter the name for the new environment.
d. From the Environment Default Network drop-down list, choose a specific
network, if necessary, or leave the default Create New option to generate a new
network.
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3. Add the IronWorker component to the environment created, and follow the
installation wizard.
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Specify CLUSTER_ID and CLUSTER_TOKEN of your IronWorker cluster. Other
values could remain with their defaults. To retrieve your CLUSTER_ID and
CLUSTER_TOKEN please follow the Prepare the environment section of the Test
Cases section of this document.

For IronWorker on Docker Standalone Host



a. Click Add Application button under Container Host field and select Docker
Standalone Host
b. Configure Docker Standalone Host Component
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5. For IronWorker on Kubernetes

a. Click Add Application button under Container Host field and select Kubernetes
Pod

b. Configure Kubernetes Pod Component
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c. Click Add Application button under Kubernetes cluster field press




d. Configure Kubernetes Cluster Component
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6. Click Deploy the Environment

5.4 Limitations

e Only HTTP endpoints for API_URL are supported. HTTPS will be supported in
upcoming patch.

e Make sure you have enough memory on instances you spawn. Each IronWorker
instance requires 16 + CONCURRENCY*MEMORY_PER_JOB megabytes.

5.5 Testing

5.5.1 Test cases

Testing the IronWorker installation was done manually. You need an Iron.io lronWorker account
to pass the test case successfully.

Prepare the environment

1. Login into your lron.io lronWorker account and collect the PROJECT _ID and TOKEN on
the https://hud.iron.io/dashboard page (click on the key button aside your project)
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2. Make sure you've created a cluster, if not, please create a new one

a. Contact Iron customer support (support@iron.io) to ensure that custom clusters
are enabled for your account.

b. Open My Clusters under your login button
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c.Click New Cluster and provide a name, memory and disk space per runner, then
click Create New Cluster
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3. Copy CLUSTER_ID and CLUSTER_TOKEN from your cluster page
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4. Open a terminal

5. Export the following variables
export IRON_PROJECT ID=<Your PROJECT_ ID>
export IRON_ TOKEN=<Your TOKEN>
export IRON_CLUSTER_ ID=<Your CLUSTER ID

6. Install Iron CLI
curl -sSL https://cli.iron.io/install | sh

7. Register a code package (Docker image) within lronWorker to execute, for example,
Docker’s hello-world.
iron register hello-world

Case 1
Execute the following command inside the terminal with the exported variables, it should print

Docker’s hello-world output.
iron worker queue -cluster $IRON_CLUSTER ID -wait hello-world



For more information about Iron CLI please visit
http://dev.iron.io/worker/cli/nttp://dev.iron.io/worker/cli/

5.5.2 Test Results

Case 1 output
Note: ID’s in your test run will differ

77777 > Configuring client

Project 'testl' with i1d='568acldff254£f2000600024c"
————— > Queueing task 'hello-world'

Queued task with id='57b33£f067582400006cb1lb80"

Check
https://hud.iron.io/tg/projects/568acldff254£2000600024c/jobs/57b33f067582400006chb1b80 for more
info
77777 > Waiting for task57b33f067582400006cblb80
————— > Done
————— > Printing Log:

Hello from Docker!
This message shows that your installation appears to be working correctly.

To generate this message, Docker took the following steps:
The Docker client contacted the Docker daemon.
The Docker daemon pulled the "hello-world" image from the Docker Hub.
3. The Docker daemon created a new container from that image which runs the
executable that produces the output you are currently reading.
4. The Docker daemon streamed that output to the Docker client, which sent it
to your terminal.

To try something more ambitious, you can run an Ubuntu container with:
$ docker run -it ubuntu bash

Share images, automate workflows, and more with a free Docker Hub account:
https://hub.docker.com

For more examples and ideas, visit:
https://docs.docker.com/engine/userguide/

6 How To (Applicable for Murano packages & Glance images)

Pre-requisites:
e OS: Linux
e Mirantis OpenStack is up and running
e Murano-enabled environment
e Murano package is imported


http://dev.iron.io/worker/cli/
http://dev.iron.io/worker/cli/
https://docs.docker.com/engine/userguide/

6.1 Murano package check

Download Murano package

Go to the Horizon -> Murano tab -> Package definitions

Select ‘Download Package’ at the ‘Actions’ drop down list

Go to the downloaded catalog and execute the following command:
# md5sum <package name>

Add the md5 checksum to the runbook

6.2 Glance image check

1.
2.

Go to the controller node via SSH

Get the UUID of your glance image

# source /root/openrc

# glance image-list

Get your package’s checksum

# glance image-show <murano_image_UUID> | grep checksum
Add the image checksum to the title page



