w2 Irom.io

INSTALLATION RUNBOOK FOR
Iron.io lronWorker

Application Type: Job processing
Application Version: 1.0
MOS Version: 8.0

OpenStack version: Liberty

Murano package
27ba40000dc1885b830d3d370b3fb5b2

checksum:

Glance image checksum

(docker):

Glance image checksum

158e19b86e7532aea708267cc8092e32

16e36fe2c6abac0103aflfaae6203213
(kubernetes):

Content

Document History
1 Introduction
1.1 Target Audience
2 Application overview
3 Joint Reference Architecture
4 Physical & Logical Network Topology
5 Installation & Configuration
5.1 Environment preparation
5.2 MOS installation
5.2.1Health Check Results
5.3 <Application name> installation steps
5.4 Limitations
5.5 Testing
5.5.1 Test cases
5.5.2 Test Results

Document History

Version

Revision Date

Description

1 Introduction

This document is to serve as a detailed Deployment Guide for Hybrid IronWorker. Iron.io offers
IronWorker as a hosted service or as a Hybrid deployment. Hybrid IronWorker enables you to
get all the power and benefits of lronWorker platform while running your workloads on your own
hardware. You can run them on your own servers on any cloud or even in your own datacenter,
behind the firewall.

This document describes the reference architecture, installation steps for Mirantis OpenStack

(MOS) + Hybrid IronWorker, limitations and testing procedures

1.1 Target Audience

Developers building distributed applications on top of OpenStack need a batch of worker to
process jobs. Such developers can register an account in Iron.io, deploy IronWorker on top of
OpenStack on their side and post jobs in the Worker’s API. Every posted job than will be

executed on a deployed IronWorker instance.

2 Application overview

With Hybrid Iron.io, the API and all the complexity of our job processing system lives in the
cloud, while the actual execution of the workloads is on-premise, behind your firewall, on your
hardware (or in your own VPC). The only thing you need to run on your systems is our runner
container; no databases to install and maintain, no API servers, or anything else. The runner
container talks to the Iron.io API, asking for jobs, executing them, and dealing with all the things

that can happen while running.

3 Joint Reference Architecture

[Iron.io Cloud API J

...

..

docker docker docker

[Kubernetes Cluster]

. B
...

ooo

4 Physical & Logical Network Topology

The following are two supported installation methods that we’ll cover in Section 5.3, steps 4-5.

4.1 Docker Standalone Host Installation

This installation method has a dependency on the Docker Murano package. A single Docker
host is deployed with the IronWorker Docker image.

LB

-,

|
/

5

Application Components

» | e

Docker Standal... Iron Worker

4.2 Kubernetes Cluster Installation

This installation method has a dependency on the Kubernetes Murano package. A cluster of
Kubernetes pods are deployed with the IronWorker Docker image.

Application Components

r | ©

Docker Standal... Iron Worker Kubernetes Clus... Kubernetes Pod

5 Installation & Configuration

5.1 Environment preparation

The only requirement is that Murano be installed in order to run the IronWorker application
component.

The following settings are provided as an example, as they were tested for the lab environment:
OpensStack Release: Liberty on Ubuntu 14.04

Compute: QEMU

Network: Neutron with VLAN segmentation

Storage Backends: Cinder LVM over iSCSI volumes

Additional Services: Install Murano

5.2 MOS installation

Guidelines and best practices published by Mirantis apply. Please follow Mirantis documentation
on setting up a Fuel node and deploying your OpenStack environment -
https://docs.mirantis.com/openstack/fuel/fuel-8.0/

5.2.1Health Check Results
This guide assumes that all automated health checks pass following the deployment of the

OpenStack environment. No additional health checks are required to validate the IronWorker
Murano package.

5.3 IronWorker installation steps

1. Add the IronWorker package from the Murano community app catalog -
https://apps.openstack.org/#tab=murano-apps

https://docs.mirantis.com/openstack/fuel/fuel-8.0/
https://apps.openstack.org/#tab=murano-apps

Create a Murano environment:
a. Inthe Horizon dashboard, navigate to
Murano > Application Catalog > Environments
b. On the Environments page, click the Add New button.
In the Environment Name field, enter the name for the new environment.
d. From the Environment Default Network drop-down list, choose a specific
network, if necessary, or leave the default Create New option to generate a new
network.

e

3. Add the IronWorker component to the environment created, and follow the
installation wizard.

© Configure Application: Iron Worker
Application Name *
IronWodker Iron Worker
Apache License. Varsion 2.0
Contal Hast *
- Appiication Name: Enter a oesired nams for the
© Add Application application. Juat A-Z. a-2.-0-9. dash ang underfing are
allowed
Docker Image * Container Host: Saact an instance of Dockar
irangorurnar contaninar hosting providar {o run the app
Docker Image: Enter docket image fof runnes
API_URL * API_URL: Enfor tha ironWorker AF| URL
P worsar-aws-us-sast-1. o, lo © CLUSTER 10: Enfer your CLUSTER |10
CLUSTER 1D * CLUSTER_TOKEN: Enter 1oken 10 B0CEsS 10 your
>3 clister
S71ARE 12036 KPOGTIIS A | CONCURRENCY: Number of concurment jobs 1o run on

each lronWorker inslance |
1

CLUSTER_TOKEN *
MEMORY_PER_JOB: - Maximum amownt of memory

eyJROGAIOUILEZE NS RS0 CIEpX VEID uy JjnHY In MBS a job wil pat

CONCURRENCY *

MEMORY_PER JOB *

256

Specify CLUSTER_ID and CLUSTER_TOKEN of your IronWorker cluster. Other
values could remain with their defaults. To retrieve your CLUSTER_ID and
CLUSTER_TOKEN please follow the Prepare the environment section of the Test
Cases section of this document.

For IronWorker on Docker Standalone Host

a. Click Add Application button under Container Host field and select Docker
Standalone Host
b. Configure Docker Standalone Host Component

. ® Configure Application: Docker Standalone Host

Application Name *
e . Docker Standalone Host
| I
T Apu:m Ucense, Verzion 2.0
W Assign Roating 1 © Application Mame: Erter 1 deseod nama for the
Custom Docker registry URL Application. Just A-Z &7, 0-5. gaah and Unoting &%
allowed
Assign Floaling 1P: Setect 1o true 10 assign Nosting
1# mutomatically
Custom Docker reglstry URL: URL of docker
1pository mimor to uss. Leave emply for Docker
dstaun
Naat
.\—- 1 nat noatatinn

I
! # Configure Application: Docker Standalone Host

instance image *

Docker Standalone Host

Specity some nistance parametars on which the

Ubuntu 14 04 x4 (pre-inztaled Docker and maa -'J

Inslance favor SpPICENon woukl De created
mi smak :J Inslance Image: Select vaio smags for Ihe application,
image shocio already bo prapared and rogistered in
Koy Palt gance
N i :l + Instance flavor: Seect ragistansd in Opandtack Havore
e Consios that GppAcation Pertomance apands on INg

patameter
Avallablility zone
Koy Pair: Select a Key Pair 1o contrd access to

nova j Instances, You can login 1o Instanoes using this
KeyPal after the deployment of applcation
Avaitabliity zone: Select avallabiity 2one where the
appication would ba instaled

Hosutname

5. For IronWorker on Kubernetes

a. Click Add Application button under Container Host field and select Kubernetes
Pod

b. Configure Kubernetes Pod Component

r

Pod Name *

ba.uw\avm

Labeis

Kubermetes cluster *
© Akl Application

Replicas (0 « disabled) *

o)

r
. © Configure Application: Kubernetes Pod

Kubernetes Pod

ApSche License, Version 2.0

© Pog Mame: Nama of the pod to create, This name
mus! be urgque throughout the cluster. The name
shouid be up to maximum Bngth of 253 characten and
corsist of lower case aiphanumenc charactemn,
hyphans. and dots

Labels: Comma separaied st of labeis. Allows easy
selacting In the lubure Vaid label keys have tao
segments - pratly and name - separated by a slash
The name segment |8 required and must be a DNS
Iabol 53 chamctars or kess, all lowercasa, baginning
and ending wilh an aiphanumenc charscler, with
dashes and alphanumarnics between The pretie and
siash are optional. If specilied, the prefoc mus! be &
DNS subdomain, Valld labef valuss must be shoraet
than 64 opt are ([-A-Za
70-3_]) but the st chamcter must be (A-Za-20-3])

vy A - K

Re o= bilod): A

L2

Setling 100 g Rap C

oy

teSrn A

c. Click Add Application button under Kubernetes cluster field press

d. Configure Kubernetes Cluster Component

© Configure Application: Kubernetes Cluster

Cluster Name *

’ wupsmetesCusten

Initiab current number of Kubemaetas nodes *

3
<

Maxi ber of nodes *

J

o Assign floating 1P 1o Kubemetes nodes

Kubernetes node hostname patiern @
huna-#

W Expose cAovisor Ui

Inimakicuttant tumber of gatewsy hodes *

1

M ot nodes "

2

W Aszign fioating 1P 1o gatewsy noces

P y pan o

gntway -2

Cuntom Dacier registry URL

Docker reglstry mirror URL

Google reglstry ey

K 0]

5)

0 D]

€0

Kubernetes Cluster
Apachs License, Version 20

© Cluster Name. Enter a Gasired name for 1he

apphication. Just A-Z, a3, 0-8 dash and undorine are
Flowed

Inilial/current number of Kuberneles nodes: Seiec]
rumber of Kubernetes nodes

Maximum number of Kubarnates nodes: Select
Maximum number of Kubamades nodes

Assign floating I to Kubernetes nodes: Chack to
assign foating 1P to Kubemates nodes

Kubernedes node hostname pattern: For your
can be specified.
Enter a nama or ieava blarm for random namea
Qaneration

Exp Ul: Opens 10
cAgvisoe Inteface

Initial'current numbar of gateway nodes: Extsmal
traffic wit be routed though galewsy noces. Increaing
galeways court allows 10 861 L COMPIEX and HA
clusters,

Ma ber of gateway nodes: M.

rumber of gateway nodes. Taken INte 3c00UNt whan
s g scalablity

Assign tloating IP to gateway nodes: Check to
assign foating IP to gatoway Nodes

Gatewny hosiname pattern: Cneck (0 assign Noating
iP to galewny nodes

Custom Docker rogistry URL: Host 1P or domain

name of custom Docker registry 10 wee, Leave amply
to s Docker Catault

Dockor registry mirror URL: UAL of Docker registry
miTOr 10 USE, Leave emply 10 not use one

Google reglstry key: Contenls of JSON key fle Used
to mstherticate to the Google Contaner Registry

I 1
! © Configure Application: Kubernetes Cluster
Instance Havor
= j Kubernetes Cluster
. Specity some Instance parameters on which
Instance image * application would be created
UDUNIY 14 04-x 64 A ubamaton :J © Inntance Mavor: Sefact one of the existing flavors
' Conzidar that application performance deperxis on this
Koy Palv parameter
Pro j + Instance image: Ses=c! valki image lor he spplcalion
liiin Image shoud aliaady be prepared and registered n

glance
Avaliabllity zone
Koy Pailr: Select the Key Pair to control access 10
nava _'j nstances. You can logn lo Instances using this !
KayPair atter the deployment |

Avallability zone: Salect an avalability zona whare
i the appiication would be instailed {
| |

:]

4 1
m

! {

6. Click Deploy the Environment

5.4 Limitations

e Only HTTP endpoints for API_URL are supported. HTTPS will be supported in
upcoming patch.

e Make sure you have enough memory on instances you spawn. Each IronWorker
instance requires 16 + CONCURRENCY*MEMORY_PER_JOB megabytes.

5.5 Testing

5.5.1 Test cases

Testing the IronWorker installation was done manually. You need an Iron.io lronWorker account
to pass the test case successfully.

Prepare the environment

1. Login into your lron.io lronWorker account and collect the PROJECT _ID and TOKEN on
the https://hud.iron.io/dashboard page (click on the key button aside your project)

https://hud.iron.io/dashboard

»

- Ironio
Projects + New Project anrch f
.: (-.h.’“v(l
& testl P < & e wos @ =
Authenncanon / Conhguranon O Dosmiond json fi

Prject © SEEACIArrISAT 0006600242

2. Make sure you've created a cluster, if not, please create a new one

a. Contact Iron customer support (support@iron.io) to ensure that custom clusters
are enabled for your account.

b. Open My Clusters under your login button

€ * & oo c B @ 4 K B E
rondo o X by =

1 Accoum Semngs
Projects +Now Project A, AP) Tokers

“ 228 0n0is A S Bing & Sonuses
= Pams

©

£ testl p X< & B £ vecoruiion

togOut

c.Click New Cluster and provide a name, memory and disk space per runner, then
click Create New Cluster

mailto:support@iron.io
mailto:support@iron.io

€ 3 & rouo e 9 a0 =

Clusters + Now Casist

My Clusters “ nybrid-witalyt
256MB

1G8|

Vive S 1T YOG RIS Q0NN WOU'D L6 AN Can Wwdya Cange it i

20 "Utntsl Mactene” or Tom (5 StapeProcessng - Dewispmene)

3. Copy CLUSTER_ID and CLUSTER_TOKEN from your cluster page
€ @ ron

Clusters / hybrid-vitalyl

114t NILI000T 08
My Chustess W ST 1A S L0000 T HOSALY Tush Acterwy ©

256 MB 1GB

4. Open a terminal

5. Export the following variables
export IRON_PROJECT ID=<Your PROJECT_ ID>
export IRON_ TOKEN=<Your TOKEN>
export IRON_CLUSTER_ ID=<Your CLUSTER ID

6. Install Iron CLI
curl -sSL https://cli.iron.io/install | sh

7. Register a code package (Docker image) within lronWorker to execute, for example,
Docker’s hello-world.
iron register hello-world

Case 1
Execute the following command inside the terminal with the exported variables, it should print

Docker’s hello-world output.
iron worker queue -cluster $IRON_CLUSTER ID -wait hello-world

For more information about Iron CLI please visit
http://dev.iron.io/worker/cli/nttp://dev.iron.io/worker/cli/

5.5.2 Test Results

Case 1 output
Note: ID’s in your test run will differ

77777 > Configuring client

Project 'testl' with i1d='568acldff254£f2000600024c"
————— > Queueing task 'hello-world'

Queued task with id='57b33£f067582400006cb1lb80"

Check
https://hud.iron.io/tg/projects/568acldff254£2000600024c/jobs/57b33f067582400006chb1b80 for more
info
77777 > Waiting for task57b33f067582400006cblb80
————— > Done
————— > Printing Log:

Hello from Docker!
This message shows that your installation appears to be working correctly.

To generate this message, Docker took the following steps:
The Docker client contacted the Docker daemon.
The Docker daemon pulled the "hello-world" image from the Docker Hub.
3. The Docker daemon created a new container from that image which runs the
executable that produces the output you are currently reading.
4. The Docker daemon streamed that output to the Docker client, which sent it
to your terminal.

To try something more ambitious, you can run an Ubuntu container with:
$ docker run -it ubuntu bash

Share images, automate workflows, and more with a free Docker Hub account:
https://hub.docker.com

For more examples and ideas, visit:
https://docs.docker.com/engine/userguide/

6 How To (Applicable for Murano packages & Glance images)

Pre-requisites:
e OS: Linux
e Mirantis OpenStack is up and running
e Murano-enabled environment
e Murano package is imported

http://dev.iron.io/worker/cli/
http://dev.iron.io/worker/cli/
https://docs.docker.com/engine/userguide/

6.1 Murano package check

Download Murano package

Go to the Horizon -> Murano tab -> Package definitions

Select ‘Download Package’ at the ‘Actions’ drop down list

Go to the downloaded catalog and execute the following command:
md5sum <package name>

Add the md5 checksum to the runbook

6.2 Glance image check

1.
2.

Go to the controller node via SSH

Get the UUID of your glance image

source /root/openrc

glance image-list

Get your package’s checksum

glance image-show <murano_image_UUID> | grep checksum
Add the image checksum to the title page

