

@Hitachi Data Systems

INSTALLATION RUNBOOK FOR

Hitachi Block Storage Driver for OpenStack

Product Name:Hitachi Block Storage Driver for
OpenStackDriver Version:1.4.10MOS Version:7.0OpenStack Version:Kilo

Product Type: Storage Driver for Cinder

DOCUMENT HISTORY	3
1. INTRODUCTION	4
1.1 Target Audience	4
2. PRODUCT OVERVIEW	4
3. JOINT REFERENCE ARCHITECTURE	4
4. PHYSICAL AND LOGICAL NETWORK TOPOLOGY	6
5. INSTALLATION AND CONFIGURATION	6
5.1 Environment Preparation	7
5.2 MOS INSTALLATION	
5.2.1 Health Check Results	
5.3 HBSD Installation Procedure	
5.4 LIMITATIONS	
5.5 TESTING	
5.5.1 Test cases	
5.5.2 Test results	25
6. TROUBLESHOOTING	
7 CONVENTIONS: ARREVIATIONS FOR PRODUCT NAMES	26

Document History

Version	Revision Date	Description
1.0	09-26-2016	Initial Version

1. Introduction

This document serves as a runbook for deploying the Hitachi Block Storage Driver for OpenStack within Mirantis OpenStack deployment. Integrating Hitachi Block Storage Driver for OpenStack into Mirantis deployment allows high-performance and high-reliability features for Hitachi storage managed by Cinder.

The objective of Mirantis OpenStack certification is to provide Mirantis program partners with a Consistent and unified approach for acceptance of their solution into the Mirantis Technology Partner Program.

Certification is designed within the context of Mirantis OpenStack infrastructure, including **Mirantis Fuel deployment tool and supported cloud reference architectures.**

1.1 Target Audience

OpenStack administrators, Storage administrators, Network administrators who are familiar with Mirantis OpenStack, Fuel and Hitachi Block Storage Driver for OpenStack.

2. Product Overview

Hitachi Block Storage Driver for OpenStack (abbreviated as HBSD hereafter) is a driver for Cinder, which is a block storage management component, in OpenStack environments. HBSD allows you to use high-performance and high-reliability features for Hitachi storage managed by Cinder. Both Mirantis OpenStack and HBSD can be configured to provide services in a variety of ways. To ensure that the best possible end result is achieved, the guidelines and best practices for Mirantis OpenStack should be followed to configure OpenStack.

For HBSD best practices it is suggested that the administrator follow the guidelines outlined in the HBSD User Manual to configure a compute and controller node.

3. Joint Reference Architecture

Overview:

This reference architecture describes how to integrate Mirantis OpenStack 7.0 (using OpenStack Kilo) with HBSD 1.4.10, utilizing HBSD as a backend storage.

- Hitachi Block Storage Device To use high-performance and high-reliability features.
- Controller nodes Servers running OpenStack controller elements.
- Compute nodes Servers running OpenStack compute elements.
- Cinder node Server running OpenStack cinder elements.
- Fuel Infrastructure running OpenStack deployment and management tool.

Node configuration:

When HBSD is used in an environment that is managed by Mirantis OpenStack 7.0, deployment of all nodes and OS configuration must be performed through Mirantis Fuel. HBSD supports deployment using Ubuntu 14.04 LTS when using OpenStack Kilo based releases. Note: This document assumes Ubuntu is being used when referencing command-line utilities and/or OS level configuration files and tools.

High Availability configurations for cinder-volume service: HBSD supports both HA [Active / Standby] mode and 'non-HA' mode.

4. Physical and Logical Network Topology

	Administrative Network		
	Management Network		-
Cinder APS	Service Cinder Volume Service	-Norm -Norm -Norm -Norm -Norm -Norm -Norm -Norm 	

Fuel operates with a set of logical networks. In this scheme, these logical networks are mapped With such example as follows:

- Administrative (Fuel) network: untagged on this scheme.
- Public Network: network: untagged on this scheme
- Floating Network: network: untagged on this scheme
- Management Network: VLAN 101.
- FC/iSCSI Network [Physical LAN or FC] is created manually to connect the control and compute nodes with Hitachi Storage.

Note: Fuel uses a separate network to connect Hitachi Storage directly.

• Private Network: VLANs 200-210

5. Installation and Configuration

Overview:

When HBSD is used as a backend storage solution for OpenStack, the guidelines and best practices published for Mirantis apply.

The deployment of Mirantis OpenStack should be done through FUEL, and the deployment should pass all automated health checks.

After installing an OpenStack environment using Mirantis Fuel a number of configuration changes are required to use HBSD as backend storage for Cinder.

Prerequisites:

This guide assumes that the following base requirements are satisfied:

- HBSD 1.4.10 is installed and configured on supported hardware.
- Mirantis OpenStack 7.0 is used and Mirantis FUEL is used to deploy/manage servers.
- Technically, this document is specific to Mirantis OpenStack 7.0 and Kilo.
- The environment is running on Ubuntu 14.04 LTS.

5.1 Environment Preparation

Please follow the Mirantis OpenStack deployment guide for getting the Fuel master node up and the controller, compute nodes discovered.

Details available in the link: <u>https://docs.mirantis.com/openstack/fuel/fuel-7.0/pdf/Mirantis-</u> <u>OpenStack-7.0-UserGuide.pdf</u>

After completing Fuel setup, the Fuel UI screen shows all your Slave nodes as "Unallocated nodes". You can now create, configure, and deploy your first OpenStack environment. One Fuel Master can deploy and manage multiple OpenStack environments but you must create each environment separately.

During the certification and functional verification of HBSD and Mirantis OpenStack 7.0 the following configuration was used:

- One Mirantis Fuel Master Node.
- One server used for Controller node and Cinder node
- Two OpenStack Compute nodes.

Creation of OpenStack environment:

- Launch Wizard to Create New Environment.
- Click on the "New OpenStack environment" icon to launch the wizard that creates a new OpenStack environment.

• Give the environment a name and select the Linux distribution from the drop-down list As Kilo on Ubuntu 14.04 (2015 1.0-7.0) (default)

• The operating system Ubuntu 14.04 will be installed on the target nodes in the environment.

- Note: HBSD does not support on Kilo on CentOS 6.5 (2015.1.0-7.0)
- On the Fuel UI, click on "New OpenStack Environment".
- When the wizard opens, enter the name and the desired OpenStack Release.

Create a new Oper	nStack environment	t	2
Name and Release	Name	HDS_MOS	
Compute	OpenStack Release	Kilo on Ubuntu 14.04 (2015.1.0-7.0) (default)	
Networking Setup		By default, packages will be fetched from external repositories. Please make sure your Fuel master node has internet access.	
Storage Backends		To specify alternate repositories, or to create a local mirror, please check the Settings tab before deployment.	
Additional Services		This option will install the OpenStack Kilo packages using Ubuntu as a base operating system. With high availability features built in, you are getting a robust, enterprise-grade OpenStack deployment.	
Finish			
Cancel		- Prev Next	+

• Select the Compute for the Environment

Create a new OpenS	tack environment	×
Name and Release Compute Networking Setup Storage Backends Additional Services Finish	 KVM Choose this type of hypervisor if you run OpenStack on hardware QEMU Choose this type of hypervisor if you run OpenStack on virtual hosts vCenter Choose this option if you have a vCenter environment with ESXi servers to be used as hypervisors 	
Cancel	← Prev Next	· →

• Select the network setup option 'Neutron with VLAN segmentation'.

• Under Storage Backend, select "No, use defaults providers". Hitachi Volume driver can be installed after the OpenStack is deployed.

Create a new Open	Stack environment	×
Name and Release Compute	Use Ceph storage? • No, use default providers	
Networking Setup	Yes, use Ceph Ceph provides a shared backend for Glance images, Nova and Cinder volumes, and Swift objects, as well as copy-on-write between them in some cases. Ceph will require assigning	
Storage Backends	Ceph-OSD role to several nodes in your cluster (at least as many as the configured replication factor). You can control the storage backend options for each component and the replication factor on the settings page.	
Additional Services		
Finish		
Cancel	← Prev Next	→

• Select the additional services and click on next.

Create a new OpenSt	ackenvironment	×
Name and Release	Install Sahara	
Compute	Sahara enables on demand provisioning of Hadoop clusters to be deployed on Openstack utilizing a variety of vendor distributions.	
compute	Install Murano	
Networking Setup	Murano is an application catalog, which allows application developers and cloud administrators to publish various cloud-ready applications in a browsable categorized catalog, which may be used by the cloud users (including the inexperienced ones) to pick-up the needed applications	;
Storage Backends	and services and composes the reliable environments out of them in a "push-the-button" manner.	
Additional Services	Install Ceilometer (OpenStack Telemetry)	
	Ceilometer provides metering and monitoring of an OpenStack cloud.	
Finish		
Cancel	← Prev Next •	+

• Click Create to start deploy the OpenStack.

Create a new OpenSt	ack environment	×
Name and Release Compute	Your environment is now ready for deployment! After clicking on the Create button, you can select Deploy Changes or make additional configuration choices in the Fuel Environments console.	
Networking Setup		
Storage Backends		
Additional Services		
Finish		
Cancel	← Prev Creat	e

5.2 MOS Installation

The MOS deployment will consist of,

- One Fuel server.
- At least one MOS controller (preferred 3 MOS controllers in HA configuration).
- Neutron VLAN based configuration is recommended.
- Storage backend as default providers [Cinder LVM over iSCSI for volumes] is mandatory.

Please follow Mirantis documentation on bringing up a fuel node and discovering nodes on which OpenStack controller/ compute services shall run.

- Add nodes to the environment.
- Assign a role or roles to each node server.
- Do the required Network settings.
- Mapping logical networks to physical interfaces on servers [if required].
- Verify Networks

	(papap		 L2 connectivity checks between every node in the environment. 		
-			2. DHCP discover check on all nodes		
			 Packages repoliconnectivity thetk from master node 		
	(° 8 8 8 .		 Packages repo connectivity check from slave nodes vi public & admin (PXE) networks. 		
ation succeeded. Yo	our network is configured correct	ly .			

• The network verification check should get succeeded in order to ensure that deployment is not failed due to network settings.

• Deploy Changes.

Exhitoers Noces	Networks Settings	Logs Helth Check			
≡ III @ II ?	7 Q		Configure Disks	Configure Interfaces	+ Add Modes
Sort By Roles 🕹					
					Select All
Controller, Storage - C Untitled (57:18)	Inder, Operating Syst	tem (1)			E Select Ali
1410/4/110/140/68					
- Traff and first concerns					
Compute, Operating 1	iystem (2)				Select All
Compute, Operating S Untitled (6e:8f)	System (2) Untitled (c3:20	η.			Select All

Status after Deployment

Presimanant of exclamant hit							
retroductor sport to department	modular 120W_20						
lorizon							
ienStack Environment manager	ment panel (Horizon) is now available						
Proceed to Harizon							
s improving r		Conscitu					
ciri i rici y		rabaruh					
une in interny	HDS_MDS1 /	CPU (Cores)	28	HDD	0.6 TB	RAM	36.0 GB
un ni na y me	HD5_MD51 🖋 Operational	CPU (Cares)	28	HDD	0.6 TB	RAM	36.0 Gł
ame ame ama penstack Release	Operational Kilo on Ubuntu 14.84	CPU (Cores)	ze tics	HDD	0.6 TH	RAM	36.0 Gł
anse antusi penstack Release penpute	NDS_MDS1 Operational Kilo on Ubuntu 14.94 KVM	CPU (Cores) Node Statis	28 tics	HDD 3	0.6 TB Ready	RAM	36.0 GB
ame ante antei penstack Release ampute etwork	NDS_MOS1 Operational Kilo on Ubuntu-14.84 KVM Neutron with VLAN segmentation	Copercity CPU (Cores) Node Statis Total Nodes Controller	ze tics	HDD 3 1	0.6 TB Ready	RAM	36.0 GB
ame antus penstack Release propute etwork prase Backends	HDS_MDS1 Operational Kilo on Ubuntu 14.84 KVM Neutron with VLAN segmentation Cinder IVM over ISCS1 for valutions	Coopercity CPU (Cores) Node Statis Total Nodes Controller Compute	28 tics	HDD 3 1 2	0.6 TB	RAM	36.0 GH
lame totus oppostack Release omputu letwork torage Backendu	HDS_MDS1 Operational Kilo on Ubuntu 14.84 KVM Neutron With VLAN segmentation Cinder LVM over ISCSI for volumes	Copercity CPU (Cores) Node Statis Total Nodes Controller Compute Storage - Cinder	ze tics	HDD 3 1 2 1	0.6 TĐ Ready	RAM	36,D GH

5.2.1 Health Check Results

Validating the installation:

• After the configuration has been completed, it should be validated using the automated health check capabilities of Mirantis Fuel.

- Doing this will catch most errors before trying to deploy production workloads.
- All Cinder related tests should pass with no errors.

• The Health Check is initiated from the Mirantis Fuel console (within the context of the relevant OpenStack cloud).

• All of the Sanity Tests should pass, and it is important that the "Create Volume" related Functional Tests also pass.

• If any of these basic tests fail, the cause should be determined and corrected before proceeding to deploy a workload on these systems.

In Health Check - Functional test, we have skipped the step "Check network connectivity from instance via floating IP ".

The reason for skipping this step in Health Check - Functional test are mentioned below,

• Target component: Neutron - This component testing is not required cinder certification.

• Scenario used to "Check network connectivity from instance via floating IP" includes,

- 1. Create a new security group (if it doesn't exist yet).
- 2. Create router, Create network and Create subnet.
- 3. Uplink subnet to router.
- 4. Create an instance using the new security group with created subnet.
- 5. Create a new floating IP.
- 6. Assign the new floating IP to the instance.
- 7. Check connectivity to the floating IP using ping command.

8. Check that public IP 8.8.8.8 can be pinged from instance.

- 9. Disassociate server floating IP.
- 10. Delete floating IP.
- 11. Delete server.
- 12. Remove router, Remove subnet and Remove network.

In the above mentioned scenario, step #8 will check whether public IP 8.8.8.8 can be pinged or not. As the environment built for this certification does not contain 8.8.8.8 in DNS list [Available in "Mirantis OpenStack Environment - Settings tab - Host OS DNS Servers"], the pinging will not happen. Hence this step has been skipped.

Note: Instead we have used a proxy server IP to establish connectivity between instance and public connectivity. This is non-HA setup, so we have skipped the HA tests.

Select All		Provide credentials	Run Te
Sanity tests. Duration 30 sec - 2 min	Expected Duration	Actual Duration	Sta
Request flavor list	20 s.	0.2	8
Request image list using Nova	20 s.	0.1	
Request instance list	20 s.	0.2	2
Request absolute limits list	20 s.	0.0	
Request snapshot list	20 s,	0.1	
Request volume list	20 s.	0.1	
Request image list using Glance v1	10 s.	0.0	
Request image list using Glance v2	10 s.	0.0	8
Request stack list	20 s.	0.0	i.
Request active services list	20 s,	0.2	
Request user list	20 s.	0.1	l.
Check that required services are running	180 s.	1.9	
Check internet connectivity from a compute 'ping' command failed. Looks like there is no Internet connection on the compute node. Please refer to OpenStack logs for more details.	100 s.	81.1	,
Target component: OpenStack Scenario: 1. Execute ping 8.8.8.8 command from a compute node.			
Check DNS resolution on compute node	120 s.	1.5	
Request list of networks	20 s,	0.1	

Functional tests. Duration 3 min - 14 min	Expected Duration	Actual Duration	Stat
https://172.17.14.87:8443/#cluster/1/healthcheck			1/4

	MOS1		
Create instance flavor	30 s.	0.3	
Check create, update and delete image actions using Glance v1	130 s.	2.5	
Check create, update and delete image actions using Glance v2.	70 s.	1.9	
Create volume and boot instance from it	350 s.	54.7	
Create volume and attach it to instance	350 s.	57.2	
Check network connectivity from instance via floating IP	300 s.	626.2	
Time limit exceeded while waiting for public connectivity checking from VM to finish. Please refer to OpenStack logs for more details.			
Target component: Neutron			
Provident (
Scenario:			
1. Create a new security group (if it doesn't exist yet).			
2. Create router			
3. Create network			
4. Create subnes			
5. Uplink subnet to router.			
6. Create an instance using the new security group			
In created subnet.			
7. Create a new floating iP			
8. Assign the new floating IP to the instance.			
Check connectivity to the floating IP using ping command.			
10. Check that public IP 8.8.8.8 can be pinged from instance.			
11. Disassociate server floating ip.			
12. Delete floating ip			
13. Delete server.			
14. Remove router.			
15. Remove subnet			
16. Remove network			
Create keypair	25 s.	0.5	
	25 s.	0.3	
Create security group			
Create security group Check network parameters	50 s.	0.1	
Create security group Check network parameters Launch instance	50 s. 200 s.	0.1 32.4	
Create security group Check network parameters Launch Instance Launch Instance with file injection	50 s. 200 s. 200 s.	0.1 32.4 39.1	
Create security group Check network parameters Launch instance Launch instance with file injection Launch instance, create snapshot, launch instance from snapshot	50 s. 200 s. 200 s. 300 s.	0.1 32.4 39.1 46.6	

HA tests, Duration 30 sec - 8 min	Expected Duration	Actual Duration	Stat
Check data replication over mysql	10 s.	-	-
Check if amount of tables in databases is the same on each node	10 s.	1	
Check galera environment state	10 s.	220	022

https://172.17.14.67:8443/#cluster/1/healthcheck

2/4

1

Check pacemaker status 10 s. RabbitMQ availability 100 s. RabbitMQ replication 100 s. Platform services functional tests. Duration 3 min - 60 min Expected Duration Typical stack actions: create, delete, show details, etc. 560 s.		
RabbitMQ availability 100 s. RabbitMQ replication 100 s. Platform services functional tests. Duration 3 min - 60 min Expected Duration Typical stack actions: create, delete, show details, etc. 560 s.	-	
RabbitMQ replication 100 s. Platform services functional tests. Duration 3 min - 60 min Expected Duration Typical stack actions: create, delete, show details, etc. 560 s.	-	
Platform services functional tests. Duration 3 min · 60 min Expected Duration Actual Typical stack actions: create, delete, show details, etc. 560 s.	-	
Typical stack actions: create, delete, show details, etc. 560 s.	I Duration	
	34.5	
Advanced stack actions: suspend, resume and check 660 s.	54.7	
Check stack autoscaling 2200 s.	0.0	
This test can not be run in current configuration. It checks Heat autoscaling using Ceilometer resources, so Ceilometer should be installed.		
Target component: Heat		
Scenario:		
1. Create test flavor,		
2. Create a keypair.		
 Save generated private key to file on Controller node. 		
4. Create a security group.		
 Chote a stack. Weil for the stack status to chapte to VICATE COMPLETE? 		
7. Create a floating IP		
8. Assign the floating IP to the instance of the stack.		
9. Wait for instance is ready for load.		
10. Load the instance CPU to initiate the stack scaling up.		
11. Wait for the 2nd instance to be launched.		
Release the instance CPU to initiate the stack scaling down.		
13. Wait for the 2nd instance to be terminated.		
14. Delete the Rie with private key. 15. Delete the stark		
16. Wait for the stack to be deleted.		
Paral and all and all and all all all all all all all all all al		

Update stack actions: inplace, replace and update whole template	950 s.	87.2
--	--------	------

Cloud validation tests. Duration 30 sec - 2 min	Expected Duration	Actual Duration	
Check disk space outage on controller and compute nodes	20 s.	1.1	
Check log rotation configuration on all nodes	20 s.	1.1	
Configuration tests. Duration 30 sec - 2 min	Expected Duration	Actual Duration	
Check usage of default credentials on master node	20 s.	53,6	
Target component: Configuration			
Scenario:			
1. Check user can not set on master node with default credentials			

https://172.17.14.67:8443/#cluster/1/healthcheck

3/4

/2016	Fuel Dashboard - HDS_MOS1			
Check if default credentials for Open	Stack cluster have changed	20 s.	0.0	
Default credentials values are used.	We kindly recommend that you changed all defaults.			
Target component: Configuration				
Scenario:				
1. Check if default credentials fo	r OpenStack cluster have changed.			
Check usage of default credentials fo	r keystone on master node	20 s.	0.3	
Default credentials for keystone on	naster node were not changed			
Target component: Configuration				
Scenario:				
1. Check default credentials for changed.	eystone on master node are			
p.//www.rGoppedgetstb.0013-2015 Minands. All rights n	rserved.			

5.3 HBSD Installation Procedure

The information described in this section about storage resource setting, installation and configuration of storage management software is all belong to Hitachi Storage Administrators. And, they will be responsible for doing the necessary configuration in order to use Hitachi storage as mentioned below.

Note: This is an example connection configuration for VSP G1000/VSP G200, G400, G600, G800/VSP/HUS VM with FC and the same can be used in case of VSP G200, G400, G600, and G800 with iSCSI also.

For more detailed information on Storage resource setting, installation and configuration of management software, kindly refer the support documents from

https://support.hds.com/en_us/documents.html

1. Setting contents for each node:

Table mentioned below shows the setting contents for each node.

"my_ip" is the public IP of each Node. The IPv4 address must be a unique value among other nodes.

Execute the command "ifconfig br-ex" to find out "my_ip" of the each specific node.

Here is an example:

root@node-2:~# ifconfig br-ex

br-ex Link encap:Ethernet HWaddr 38:63:bb:43:57:19 inet addr:172.17.14.15 Bcast:172.17.15.255 Mask:255.255.254.0 inet6 addr: fe80::3a63:bbff:fe43:5719/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:272031416 errors:0 dropped:440885 overruns:0 frame:0 TX packets:30419755 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:75919765059 (75.9 GB) TX bytes:1750811584 (1.7 GB)

root@node-2:~#

Node type	ltems	Contents
Cinder node	my_ip for cinder service	Specify IPv4 address for management
	(/etc/cinder/cinder.conf)	LAN of the node. The IPv4 address
		must be a unique value among other
		nodes.
		(less than 15 characters)
	Initiator IQN	Specify Initiator IQN which must be a
	(/etc/iscsi/initiatorname.iscsi)	unique value among other nodes.
Compute node	my_ip for nova compute service	Specify IPv4 address for management
	(/etc/nova/nova.conf)	LAN of the node. The IPv4 address
		must be a unique value among other
		nodes.
		(less than 15 characters)
	Initiator IQN	Specify Initiator IQN which must be a
	(/etc/iscsi/initiatorname.iscsi)	unique value among other nodes.

2. Resource setting of the storage:

For the target storage device, set the following resources to allow HBSD to use each FC connection.

FC Connection:

- Create a Resource-Group and an account for user groups [only for RAID storage].
- Create a DP pool.
- Enable Port Security for HBSD.
- Manually set the storage control path for the Controller node.
- Create a host group using I/O data path for Controller node and Compute node.
- Set FC zoning.
- Reboot the Controller and Compute nodes.

iSCSI Connection:

- Create a Resource-Group and an account for user groups [only for RAID storage].
- Create a DP pool.
- Enable Port Security for HBSD.
- Manually set the storage control path for the Controller node.
- Create an iSCSI target using I/O data path for Controller node and Compute node.

3. Install and Configure the storage management software:

Designated management software must be configured on the Controller node for each target storage device.

- Setting of CCI for VSP G1000/ VSP G200, G400, G600, G800/VSP/HUS VM o Install CCI to the Controller node.
 - o At the command device (In-Band),
 - § Confirm that there is a connection to a command device.

§ Create the configuration file for horcm instance

- Setting of SNM2 CLI for HUS100.
 - o Install SNM2 CLI.
 - o Register Unit name or Controller for HUS100.
 - o If Account Authentication is enabled, login beforehand.

4. HBSD Installation:

Follow the procedure given below to install HBSD package.

• Use the dpkg command to install HBSD.

• You must log in as a super user (root) on the Controller node where you want to install HBSD.

o Before installing HBSD, stop the cinder-volume service.

/usr/sbin/service cinder-volume stop

o If you use the cinder-backup service, stop that service also.# /usr/sbin/service cinder-backup stop

o Perform the installation. dpkg -i hbsd_1.4.10-0-6.0_all.deb

Note: The HBSD package will be available from Hitachi Data Systems support team. Kindly contact Hitachi Data Systems in order to get and use this package.

5. Initial Settings:

Mirantis OpenStack needs HBSD configuration along with cinder, edit the configuration file (/etc/cinder/cinder.conf) on the Cinder node by manually.

- Associating volume type and backend.
 - # /usr/bin/cinder type-create <volume type name>
 - # /usr/bin/cinder type-key <volume type name> set
- volume_backend_name=<volume

backend name>

• Adding the configuration of HBSD.

According to the using of OpenStack configuration installer, add the configuration

of

HBSD to the editing target. After this, adding it to the configuration file (/etc/cinder/cinder.conf) provided by the OpenStack-cinder package is explained.

In DEFAULT section:

o Enable backend list: VSPG200, HUS100(shown in the cinder.conf sample below) o logging format: Thread information is add to default format to log analysis.

In VSPG200 section:

o Backend definition section: VSPG200 (any string)

- o Backend name registered with the volume type using the cinder type-key command: hbsd_backend
- o Volume driver: cinder.volume.drivers.hitachi.hbsd.hbsd_fc.HBSDFCDriver
- o Storage device serial number: 12345
- o DP pool ID: 0
- o TI pool ID for Thin Image: 1
- o Login user name to the target storage: user
- o Login password to the target storage: password
- o Storage controller port names which Controller node uses: CL1-A, CL2-A
- o Storage controller port names which Compute nodes use : CL1-B, CL2-B

In HUS100 section:

- o Backend definition section: HUS100 (any string)
- o Backend name registered with the volume type using the cinder type-key command: hbsd_backend2
- o Volume driver: cinder.volume.drivers.hitachi.hbsd.hbsd_iscsi.HBSDISCSIDriver
- o Array Unit name: HUS100_unitname
- o DP pool ID: 5
- o DP pool ID for Copy-on-write snapshot: 6
- o Storage controller port names which Controller node uses: 0E, 0F
- o Storage controller port names which Compute nodes use : 1E, 1F

#The following table provides a sample for cinder.conf file

cinder.conf sample # [DEFAULT] : (Omitted) enabled_backends=VSPG200 logging_context_format_string=% (asctime) s. % (msecs) 03d % (process) d% (thread) s %(levelname)s %(name)s [%(request_id)s %(user_identity)s] %(instance)s%(message)s : (Omitted) [VSPG200] volume_driver=cinder.volume.drivers.hitachi.hbsd.hbsd_fc.HBSDFCDriver volume_backend_name=hbsd_backend1 hitachi_storage_cli=HORCM hitachi_storage_id=12345 hitachi_pool=0 hitachi_thin_pool=1 hitachi_horcm_user=user hitachi_horcm_password=password hitachi_target_ports=CL1-A, CL-2A hitachi_compute_target_ports=CL-1B, CL2-B

[HUS100]

volume_driver=cinder.volume.drivers.hitachi.hbsd.hbsd_iscsi.HBSDISCSIDriver volume_backend_name=hbsd_backend2 hitachi_storage_cli=SNM2 hitachi_storage_id=HUS100_unitname hitachi_pool=5 hitachi_thin_pool=6 hitachi_target_ports=0E,0F hitachi_compute_target_ports=1E,1F

6. Syntax of Hitachi Block Storage Driver for OpenStack:

Specify "parameter=value" pair per line. The table shown below describes the HBSD specific parameters that has to be defined in HBSD settings in the configuration file (/etc/cinder.conf) provided by the OpenStack cinder package.

Name	Description
hitachi_storage_cli	Specify the CLI type to operate the storage device.
hitachi_storage_id	Specify the chassis ID of the storage device to operate.
hitachi_pool	Specify the ID of the DP pool (integer) or pool name that stores LDEVs for volumes (or snapshots).
hitachi_horcm_user	Specify the user name that the instance used by CCI uses to login to the storage.
hitachi_horcm_password	Specify the password that the horcm instance used by CCI uses to log in to the storage.
hitachi_target_ports	Specify the controller port name to search host groups(iSCSI targets) when attaching volumes.

Note: The above mentioned details are specific to Hitachi Storage and will be available with Hitachi Storage Administrator or User who has configured this Storage Device. Therefore, HBSD user has to get this information from them.

7. Restart the Cinder service:

- start the cinder-volume service #/usr/sbin/service cinder-volume start cinder-volume start/running, process
- If you use the cinder-backup service, start that service also.
 #/usr/sbin/service cinder-backup start

cinder-backup start/running, process <Process ID>

8. Operation check:

- Pre-operation check by the storage operation software (ex. CCI or SNM2 CLI).
- Confirm that HBSD is being used.
- Confirm Create Volume
- Confirm Attach Volume
- Confirm Detach Volume
- Confirm Create Snapshot
- Confirm Create Volume from Snapshot
- Confirm Delete Volume
- Confirm Delete Snapshot
- Confirm Delete Volume

5.4 Limitations

0\$	Mode	HV	Network	Storage
			VLAN	Ceph
Ubuntu	Standalone and HA [1*]	KVM	~	x

[1*] - HA configuration cannot be done for "cinder-volume" service.

Note: Create a new OpenStack environment for MOS deployment with following limitations, HBSD does not support Juno on CentOS 6.5 (2014.2.2-6.1).

HBSD administrator requires storage backend with default providers [Cinder LVM over

iSCSI for volumes] as this configuration setting is used to update Hitachi storage details with cinder-volume service.

5.5 Testing

5.5.1 Test cases

In addition to functional tests that are a part of the Fuel Health Check: Verify instances connected to Hitachi Storage via HBSD with below mentioned functional testing.

#	Category	Function	Description
1	Provisioning	Create volume	Create new volume (DP-VOL)
2		Create cloned volume	Create new volume from existing volume using Shadow
Z		Create cioneu voluine	innage of finit innage
3		Delete volume	Delete a volume

	Snapshot	Croate spanshet	Create a snapshot from a volume using Shadow Image or Thin Image
4			
			snapshot using Shadow Image
5		Create volume from snapshot	or Thin Image
6		Delete snapshot	Delete a snapshot
7		Initialize connection	Map the specified volume to a host group or iSCSI target
			Un map the specified volume to
8	Attach / Detach	Terminate connection	a host group or iSCSI target
			Copy OS image to the specified
9		Copy image to volume	volume using dd
10	Image creation	Copy volume to image	Copy the specified volume as OS image data using dd
11		Manage volumes	LDEV which Cinder of other OpenStack made is added under management of target Cinder.
			The volume which Cinder made is removed from the Cinder
12	Mange / Unmanage	Unmanage volume	management

5.5.2 Test results

#	Category	Function	Test Results
1	Provisioning	Create volume	Success
2		Create cloned volume	Success
3		Delete volume	Success
4	Snapshot	Create snapshot	Success
5		Create volume from snapshot	Success
6		Delete snapshot	Success
7		Initialize connection	Success
8	Attach / Detach	Terminate connection	Success
9		Copy image to volume	Success
10	Image creation	Copy volume to image	Success

11		Manage volumes	Success
12	Mange / Unmanage	Unmanage volume	Success

6. Troubleshooting

This section explains how to perform troubleshooting for HBSD. Service cinder-volume does not start:

- An error message for HBSD is output to "/var/log/cinder/cinder-volume.log". Kindly check and take necessary action to resolve the cause.
- If no error message is logged for HBSD in var/log/cinder/cinder-volume.log", then check "/var/log/hbsd/debug.log" file and takes necessary action to resolve the cause.
- Similarly, do troubleshoot all issues related to HBSD functionalities. [Ex: Create Volume, Create snapshot, etc.]

7. Conventions: Abbreviations for product names

- HBSD: Hitachi Block Storage Driver for OpenStack
- HUS 1xx: Hitachi Unified Storage Family
- HUS VM: Hitachi Unified Storage VM
- VSP: Hitachi Virtual Storage Platform
- VSP G1000: Hitachi Virtual Storage Platform G1000
- VSP G200: Hitachi Virtual Storage Platform G200
- VSP G400: Hitachi Virtual Storage Platform G400
- VSP G600: Hitachi Virtual Storage Platform G600
- VSP G800: Hitachi Virtual Storage Platform G800
- SNM2: Hitachi Storage Navigator Modular 2
- CCI: Command Control Interface